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Abstract. Critical points approach in the frames of multifractal thermodynamics is suggested to interpret
the experimental data on nuclear multifragmentation which come from interactions in nuclear emulsion
(in which 197

79 Au118 nuclei of energy 1 GeV/nucleon break up into fragments) and from the charge dis-
tributions of projectile fragments in sulphur (32S) fragmentation at 200 GeV/nucleon. It is also shown
that multifragmentation after macro-solids collisions exhibits properties analogous to those observed in
the nuclear multifragmentation experiments.

PACS. 25.70.Pq Multifragment emission and correlations

Intermittency in multiparticle production at hadron-
hadron and hadron-nucleus interactions is now well
known phenomenon (see, for instance, [1–3] and references
therein). In the nuclear collisions at lower bombarding en-
ergies (∼ 1 GeV/nucleon) particle production is strongly
suppressed and fragmentation processes dominate. The
experimentally observed fragment-size distributions also
exhibit intermittent properties (see, for instance [4–6] and
references therein). However, the intermittency of the nu-
clear fragmentation processes is substantially less known
than intermittency of multiparticle production. Thermo-
dynamic approach is actively used to study the intermit-
tency phenomenon in multiparticle production [7–9] (and
references therein) and it seems reasonable to use the mul-
tifractal thermodynamics to interpret also the experimen-
tal data on multifragmentation processes at nuclear col-
lisions. In present note we introduce a critical points ap-
proach in the frames of multifractal thermodynamics for
this purpose.

Another interesting question related to the nuclear
multifragmentation is: whether there is some universal-
ity in the fragmentation processes. E.g., the intermittency
in fragment-size distributions was recently also discovered
(experimentally [10] and numerically [11]) in multifrag-
mentation after macro-solids collisions. In this note we
also present a comparison of the macro-solids fragmenta-
tion intermittency with the nuclear fragmentation inter-
mittency to show universal character of the multifractal
critical behavior of the multifragmentation processes.

Let us introduce some definitions. Suppose we have
a random field X. Generalized scaling implies a scaling
relationship between the moments of different order of X:

Fq ∼ F ρ(q,p)p (1)

where the moments Fp can be, for instance, ordinary en-
semble moments Fp ≡ 〈Xp〉 (〈. . .〉 denotes a statistical
average on ensemble) or scaled factorial moments [1] or
conditional moments [4]. In present note we use all these
types of moments to analyze existing data. It should be
noted, that it was [4] where generalized scaling (1) for con-
ditional moments was applied for the first time in context
of the nuclear multifragmentation. For multiparticle pro-
duction at high energies the generalized scaling using the
scaled factorial moments was applied for the first time in
[12].

From definition (1) one can see that:

Fq ∼ F ρ(q,p)p ∼ [F ρ(p,r)r ]ρ(q,p) ∼ F ρ(p,r)ρ(q,p)r

(where representation Fp ∼ F
ρ(p,r)
r was used, cf. (1)). On

the other hand, Fq ∼ F
ρ(q,r)
r . Then, comparing these two

representations of Fq, one obtains for the relative exponent
ρ(q, p) following equation

ρ(q, p)ρ(p, r) = ρ(q, r) (2)

It follows from (2) that ρ(q, p) can be represented by the
form

ρ(q, p) =
χ(q)
χ(p)

(3)

and that this representation is unique. A critical point pc
is defined by

χ(pc) = 0 (4)

Let us recall the thermodynamic interpretation of mul-
tifractality [13,14]. Suppose that the total volume of a
sample consists of a d-dimensional cube of size L. We di-
vide this volume intoN boxes of linear size l (N ∼ (L/l)d),
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each labeled by an index i, and construct for each box the
measure of a field µ(x)

µi(l) =
∫
vi

µ(x) dv (5)

where vi is the volume of the ith box. The generalized
dimension, Dp, is defined by

Dp = lim
(l/L)→0

lnZ(p)
(p− 1) ln(l/L)

(6)

with the partition function Z(p) =
∑
i µ

p
i . This implies the

scaling behavior: Z(p) ∼ (l/L)τ(p) where τ(p) = Dp(p −
1). Let us group the boxes with the singularity exponent
α: µi(l) ∼ (l/L)α (for small l/L) into a subset S(α). In
the scaling hypothesis, the number of boxes dNα needed
to cover the subset S(α) should behave like: dNα(l) =
dρ(α)(l/L)−f(α). In these terms, Z(p) can be represented
as follows:

Z(p) '
∫
dρ(α)(l/L)pα−f(α) (7)

In the limit (l/L)→ 0, the integral in (7) is dominated by
the term (l/L)minα(pα−f(α)). From the definition of τ(p),
one obtains τ(p) = minα(pα−f(α)). Thus τ(p) is obtained
by Legendre transforming f(α). When f(α) and τ(p) are
smooth functions, this relationship can be rewritten in the
following way:

τ(p) = pα− f(α),
df

dα
= p (8)

The thermodynamic interpretation of these relation-
ships means that p can be interpreted as the inverse
of temperature: p ∼ β = T−1 (taking the Boltzmann
constant as 1) and the limit (l/L) → 0 can be seen
as the thermodynamic limit of infinite volume (V =
ln(L/l) → ∞). Then by identifying αi = lnµi/ ln(L/l)
with the energy Ei (per unit of volume) of a microstate
i, one can rewrite the partition function in the familiar
form [15]: Z(p) =

∑
i exp(−βEi). From the definition:

f(α) ∼ lnNα((l/L))/ ln(L/l), the singularity spectrum
f(α) is seen to play the role of the entropy (per unit of
volume).

When one deals with thermodynamic phase transi-
tions, it is important to choose relevant quantities for con-
sideration of scale invariance in the vicinity of the criti-
cal point Tc (or βc). In ordinary thermodynamics, this is
(T − Tc) [15]. However, for multifractal thermodynamics
the relevant quantity is (β − βc) due to p ∼ β (see above
and [16]). It is thus interesting to check a phase-transition-
like behavior of the function χ(p) for p close to pc (cf. [15,
16]), namely, χ(p) ∼ (p − pc)γ where γ is some critical
exponent.

It follows from definition of the normalized ordinary
ensemble moments

Fp =
∑N
i=1 µ

p
i

N

Fig. 1. χ(p)/χ(1) against p in a log-log plot for the mass distri-
bution of fragments in the experimental study of fragmentation
of glass rods [10]. Straight line is the best fit which indicates
agreement of the data with the critical representation (9)

that χ(0) = 0 due to F0 = 1 for this case. I.e. natu-
ral critical point for the ordinary ensemble moments is
pc = 0. For scaled factorial moments and for conditional
moments pc = 1 (see below). Let us start from a situation
described by the ordinary ensemble moments (i.e. from
situation with pc = 0). In paper [10] a simple experiment
on macro-solid fragmentation intermittency is described.
Namely, brittle fracture of glass rods dropped onto the
ground is studied experimentally with a focus on possible
dependence of the distribution of fragment masses on the
input energy that causes the fragmentation to occur. The
input energy can be measured conveniently by the height
from which the glass rod is dropped. Since the fragment-
mass distribution P (m) depends on the height of fall h
the moments

Fp(h) =
∑
m P (m)mp∑
m P (m)

(8)

also depend on h and F0 = 1 from definition (8) (i.e. pc =
0) in this case. The generalized scaling (1) was observed for
these moments and the observed dependence χ(p)/χ(1) is
shown in Fig. 1. The log-log scales are used for comparison
with the critical behavior

χ(p)/χ(1) = pγ (9)

which corresponds to pc = 0. The straight line drawn in
Fig. 1 indicates this behavior with γ ' 1.49 (about a pos-
sible meaning of the values of γ see discussion in the end
of the note).

Let us now consider the critical multifractality at nu-
clear multifragmentation. In paper [5] the scaled factorial
moments were used to analyze experimental data on the
fragments mass distributions produced by interactions in
nuclear emulsion, in which 197

79 Au118 nuclei of energy E = 1
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GeV/nucleon breakup into fragments. Definition of the
scaled factorial moments is

〈Fq〉 = Mq−1〈
M∑
p=1

np(np − 1)...(np − q + 1)
〈N〉q 〉 (10)

where 〈N〉 is the mean fragments multiplicity in the inter-
val ∆s (s is the charge of the fragments), with a particu-
lar partition of the region of interest ∆s in M bins of size
δs = ∆s/M , np is the number of fragments in the pth bin
and the brackets 〈...〉 denote average over many events
(authors of [5] also used some smoothing operation). It
is shown in [5] that these (smoothed) factorial moments
exhibit scaling

〈Fp〉 ∼ (∆s/δs)ζp (11)

where ζp is some function on p. Using the ordinary scaling
(11) one can obtain for the generalized scaling exponents
χ(p) relationship

χ(p)/χ(q) = ζp/ζq (12)

From the definition ζ1 = 0 and, therefore, χ(1) = 0 for
the scaled factorial moments. It means that pc = 1 for
this case. Thus, the critical representation for χ(p) in a
vicinity of the critical point pc = 1 is

χ(p)/χ(2) = (p− 1)γ (13)

(cf. critical representation (9) corresponding to ordinary
ensemble moments). In Fig. 2 we show the data taken from
[5] calculated using (12). The axes in this figure are chosen
for comparison with the critical representation (13) (the
straight line in this figure indicates γ ' 1.43).

Let us also use the so-called conditional moments
which were introduced in [4] to study hot-nuclei multi-
fragmentation. These (single-event) normalized moments
are defined as follows

F (j)
p = M (j)

p /M
(j)
1 (14)

where

M (j)
p =

smax∑
s=1

spn(j)(s) (15)

and n(j)(s) = 0, 1, 2, ..., is the number of fragments of
charge s appearing in the event j. From the definition
pc = 1 for these moments and critical representation (13)
should be checked in a vicinity of this critical point. In a
recent paper [6] the generalized scaling (1) for the condi-
tional moments was calculated for experimental data on
the diffractive excitation and electromagnetic dissociation
of sulphur nuclei (32S) at 200 GeV/nucleon (the fragmen-
tation channel data were taken from [17,18]). In Fig. 3
the generalized scaling exponents are shown versus (q−1)
using log-log scales to check the critical relationship (13)
(straight lines) for the diffractive excitation (circles) and
for the electromagnetic dissociation (squares) data. The
multifractal critical exponent γ ' 0.86 for the diffractive

Fig. 2. χ(p)/χ(2) against (p − 1) in a log-log plot for the
fragment-size distribution at nuclear multifragmentation in nu-
clear emulsion, in which 197

79 Au118 nuclei of energy E = 1
GeV/nucleon breakup into fragments (data taken from [5]).
Straight line is the best fit which indicates agreement of the
data with the critical representation (13)

Fig. 3. χ(p) against (p− 1) in a log-log plot for the fragment-
size distribution at nuclear multifragmentation for experimen-
tal data on the diffractive excitation (circles) and electro-
magnetic dissociation (squares) of sulphur nuclei (32S) at 200
GeV/nucleon (the fragmentation channel data taken from [6],
[17], [18]). The triangles correspond to mass distribution of
fragments in the fragmentation by collision of two solid disks
(the data taken from [11]). The straight lines are the best fit
which indicate agreement with the critical representation (13)

excitation events and γ ' 0.80 for the electromagnetic dis-
sociation events. The diffractive excitation process is a nu-
clear reaction while the electromagnetic dissociation pro-
cess is an electromagnetic interaction. However, one can
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see that the multifractal critical fragmentation relation-
ship is applicable to both these multifragmentation pro-
cesses. Moreover, in a recent paper [11] fragmentation in
collision of solids was simulated using a dynamical model
of granular solids [11]. In this model, the solid consists of
unbreakable and undeformable grains that are connected
by elastic beams which can be broken according to a rule
that takes into account of stretching and bending of the
connections. The fragment mass distribution was found
to depend on a dimensionless parameter η, which is the
square root of the ratio of the collision and the binding
energies. The authors of [11] used the normalized con-
ditional moments (14), (15) to calculate the generalized
scaling exponents. We show the data taken from [11] in
Fig. 3 as well (triangles). One can see that these data also
satisfies to the multifractal critical relationship (13) (with
γ ' 1.15).

Finally, let us discuss several points which could be
important for future investigations. The first point is the
meaning of the various values for the critical exponent γ.
In [19] a family of systems with infinite multifractal criti-
cal temperature was rigorously considered and a theory of
multifractal phase transitions with arbitrary integer order
was developed. For this special case χ(p) ∼ pγ in a vicin-
ity of the critical point pc = 0. It is suggested in [19] to
relate the critical index γ to order of corresponding mul-
tifractal phase transition. In this approach, in particular,
case γ > 1 corresponds to multifractal phase transition
of a finite order (this order is calculated using the value
of γ), while the case γ < 1 corresponds to multifractal
phase transition of infinite order (in the terms of the the-
ory developed in [19]). Now we don’t know whether the
model consideration performed in [19] can be applied to
the general case investigated in present note. However, the
idea to relate various values of the multifractal critical in-
dex to different orders of corresponding multifractal phase
transitions could be useful for future investigations.

Furthermore, finite size effects may be quite important
in the nuclear reactions. In particular, in finite systems
universal critical behavior can be induced by finite size
effects [20]. On the other hand, it was claimed in several
theoretical works [21], [22] that for ordinary thermody-
namics it is difficult to compare the exponents obtained
for finite systems with the expected ones corresponding
to the relevant universal class, due to the deformations
induced by finite size effects. If there indeed exists rela-
tion between value of the multifractal critical exponent γ
and order of corresponding multifractal phase transition

[19], then one can expect that the problem with finite size
effects (so difficult in ordinary thermodynamics) is not
so crucial in the multifractal thermodynamics. This could
also explain the fact that all (nuclear and macro-solid)
data available in present time seem to be consistent with
the critical multifractal representation.

The author is grateful E.S.C. Ching and F. Kun for providing
the data, to E.S.C Ching, D. Stauffer and to N. Schörghofer
for discussions and to Referee for comments and suggestions.
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